Draft Guidance on Quantitative PM Hot-spot Analyses for Transportation Conformity

U.S. Environmental Protection Agency Draft released May 26, 2010

1

Outline

- Background
- Overview of draft guidance
- PM hot-spot analysis example
- Outreach and future training

Conformity Background

- Conformity rule requires a PM hot-spot analysis for projects of local air quality concern (major new projects with significant diesel traffic) e.g.:
 - » A highway with significant truck traffic, or
 - » A regional transit terminal with a large diesel bus fleet
- CAA section 176(c) requires that federally supported new transportation projects in PM_{2.5} and PM₁₀ nonattainment and maintenance areas cannot:
 - » Cause or contribute to new NAAQS violations,
 - » Worsen NAAQS violations, or
 - » Delay timely attainment of NAAQS or interim milestones
- Qualitative PM hot-spot analyses are currently required

Purpose of Guidance

- Draft guidance describes how to determine the local air quality impacts of transportation projects on PM_{2.5} and PM₁₀ NAAQS in the "project area"
 - » Emissions from the project and nearby sources
 - » Background from other sources
- Will not change existing conformity requirements (e.g., does not change what projects require a PM hot-spot analysis)
- Final guidance required by the conformity rule before quantitative PM hot-spot analyses apply

Guidance Schedule

- On May 26, EPA announced in the <u>Federal Register</u> that the draft PM hot-spot guidance was posted on EPA's website for public comment by July 19
 - » Comments can be sent to PMhotspot-comments@epa.gov
 - » <u>Federal Register</u> notice, draft guidance, and fact sheet available at: <u>www.epa.gov/otag/stateresources/transconf/policy.htm</u>
- EPA will issue final guidance later this year and plans to establish conformity grace period before project-level analyses are required using MOVES (or EMFAC)
 - » Grace period would start from publication date of a future <u>Federal</u> <u>Register</u> notice announcing release of final guidance
 - » EPA will also release separate CO project-level MOVES guidance

5

EPA's Coordination for Draft Guidance

- Several EPA offices involved
- FHWA and FTA
- CARB and Caltrans for EMFAC section
- Conference calls with stakeholder groups

Build/No-build Analyses

- In general, a PM hot-spot analysis compares AQ concentrations with the proposed project (the build scenario) to AQ concentrations without the project (the no-build scenario)
- Build scenario cannot produce new NAAQS violations, worsen existing NAAQS violations, or delay timely attainment as compared to no-build scenario
- Project meets conformity requirements, if at each appropriate receptor:

PM concentration of build <a> NAAQS or PM concentration of no-build

 For example, conformity would be met at a receptor in a 2006 PM_{2.5} NAAQS area if:

» NAAQS: 35 μg/m³
 » Build (with project) 36 μg/m³
 » No-build (without project) 37 μg/m³

7

Agencies Involved in PM Hot-spot Analyses

- The project sponsor (e.g., a state DOT or transit agency) is the lead agency in developing the analysis
- FHWA/FTA make the project-level conformity determination and provide technical assistance
- EPA writes the conformity regulations and provides technical assistance
- State and local AQ agencies and MPOs may provide data to be used in hot-spot analyses (varies per area)
- All agencies involved in the interagency consultation process (an essential part of PM hot-spot analyses)
- See Section 2 of draft guidance for more background

Overview of a PM Hot-spot Analysis

- Step 1: Determine need for analysis
- Step 2: Determine approach, models, and data
- Step 3: Estimate on-road motor vehicle emissions
- Step 4: Estimate dust and other emissions (when necessary)
- Step 5: Select AQ model, data inputs and receptors
- Step 6: Determine background concentrations
- Step 7: Calculate design values and compare build/nobuild results
- Step 8: Consider mitigation or control measures (when necessary)
- Step 9: Document analysis
 See Section 3 of draft guidance for more details

Pre-Analysis Work

- Step 1: Determine need for analysis
 - » PM hot-spot analyses required for projects of local air quality concern
 - » Draft guidance relies on existing interagency consultation process
- Step 2: Determine approach, models, and data
 - » Geographic area (the "project area") and emissions sources
 - » General analysis approach and analysis year(s)
 - » PM NAAQS and number of calendar quarters
 - » Type of PM emissions
 - » Models and methods
 - » Project-specific data for emissions and AQ modeling

)

Steps 3 and 4: Emissions Modeling

- Estimate emissions from the project:
 - » Motor vehicle exhaust and brake/tire wear (EMFAC in CA)
 - » Road/construction dust (use AP-42 or local methods, when necessary)
 - » Construction equipment emissions (when necessary)
- When needed, estimate emissions from other sources, e.g.:
 - » Locomotive emissions for freight rail terminal
 - » Activity on adjacent highway that is significantly affected by the project
- See Sections 5, 6, and 8 of draft guidance as well as Appendices G, H, and I

Using EMFAC to Develop Emission Factors

- A. Divide project into links to account for emissions at different locations and speeds
 - » Roadway link (highway and intersection projects)
 - » Off-network link (transit and other terminal projects)
- B. Determine number of EMFAC runs
 - » In most cases, one run is needed unless fleet mix or activity varies by time period or activity.
- C. Specify Basic Scenario Inputs
 - » Select geog area, year, & determine if fleet activity varies by season or month
 - » Select annual average or develop month/season scenarios
 - » Modify vehicle classes if needed
- D. Configure Emission Factor Outputs and Edit Program Constants
 - » In EMFAC mode, configure temp, relative humidity and speed
 - » Select output particulate and summary rate file
 - » Change distributions of VMT, trips, & vehicle pop. to reflect fleet mix
- E. Generate emission factors for air quality modeling
 - » AERMOD (grams/hour)
 - » CAL3QHCR (grams/vehicle-mile)

Steps 5, 6, and 7

- These steps cover air quality modeling, determining background, and calculating design values based on:
 - » Air quality modeling results (project and nearby sources) and
 - » Air quality monitoring data (background from other sources)

13

Step 5: Air Quality Modeling

- A. Select air quality model
- B. Characterize emission sources (location, timing, use emission rates for project and nearby sources)
- c. Obtain representative meteorological and other data
- D. Specify receptors throughout project area
- E. Run air quality model
- See Section 7 of draft guidance for more
- Draft guidance consistent with how air quality modeling done for other regulatory programs
 - » Relies on EPA's "Guideline on Air Quality Models" (Appendix W to 40 CFR Part 51)

Recommended AQ Models

Type of Project	Recommended Model
Highway and intersection projects	AERMOD, CAL3QHCR
Transit, freight, and other terminal projects	AERMOD
Projects that involve both highway/intersections and terminals, and/or nearby sources	AERMOD

Note: Alternate models determined on case-by-case basis through Appendix W process

Place Receptors

- Receptors are locations where an air quality model predicts air quality concentrations
- Conformity rule requires NAAQS to be evaluated "at appropriate receptor locations"
- In March 2006 final rule, EPA stated that guidance would be consistent with PM_{2.5} monitoring regs
- Draft includes general guidance for all PM NAAQS
 - » Place receptors to model highest concentrations
- Also includes additional guidance for PM_{2.5} NAAQS
 - » Population-oriented (for 24-hour and annual PM_{2.5} NAAQS)
 - » Community-wide air quality (for annual $PM_{2.5}$ NAAQS only)

Step 6: Determine Background Concentrations

- Includes other sources that affect concentrations in project area
- Options in draft guidance:
 - » Use representative AQ monitoring data from one monitor or interpolate between several monitors
 - » Adjust monitoring data based on SIP or other modeling results
 - » Other methods
- See Section 8 of draft guidance for more

17

Step 7: Calculate Design Values

- For PM hot-spot analyses, a design value is a statistic that describes a future air quality concentration in the project area that can be compared to a NAAQS
- Draft PM hot-spot guidance describes how to calculate design values (including rounding conventions) for:
 - » Annual PM_{2.5} NAAQS
 - » 24-hour PM_{2.5} NAAQS
 - » 24-hour PM₁₀ NAAQS
- Conformity is met if the design value for every appropriate receptor in the build scenario is <u>less than or equal</u> to the NAAQS or the same receptor in the no-build scenario
 - » May be certain cases where a possible "new" violation in the build is relocated from a different receptor in the no-build
- See Section 9 of draft guidance for more

Appropriate Receptors for Annual PM_{2.5} NAAQS

- After design values are calculated, it may be necessary to determine whether a receptor is appropriate to compare to the annual PM_{2.5} NAAQS
 - » Unnecessary if conformity met at all receptors
 - » Unnecessary for 24-hour PM_{2.5} or PM₁₀ NAAQS
- Appropriate receptors for annual PM_{2.5} NAAQS must represent "community-wide air quality"
 - » Draft guidance is consistent with how NAAQS is established and monitored for air quality planning purposes
- See Section 9.4 of draft guidance for further information and examples

19

Remaining Steps

- Step 8: Consider mitigation or control measures (when necessary)
 - » Section 10 of draft guidance outlines measures by category:
 - Retrofitting, replacing vehicles/engines, and using cleaner fuels
 - Reduced idling programs
 - Transportation project design revisions
 - Fugitive dust control programs
 - Addressing other sources of emissions
 - Other measures may be available
- Step 9: Document analysis

Abbreviated Example of a Proposed Highway Project

Project: A state DOT is building a new highway interchange and exit ramps are being added to a 6-lane freeway to allow trucks access to local businesses

Defining Links and Running EMFAC

Project involves three basic link types with unique average speeds:

- •Free-flow driving
- •Intersection approach/ deceleration and idle
- •Intersection departure/ acceleration

Placing Receptors and Running Air Quality Model

- •Either AERMOD or CAL3QHCR could be used
- •Receptors placed throughout project area, and model is run
- •Separate from modeling, representative background data is obtained

23

Determining Conformity

At highest receptor: $14.5 \mu g/m^3$ Annual PM_{2.5} NAAQS: $15.0 \mu g/m^3$

Conformity is met at all receptors, since the design value at the receptor with the highest PM_{2.5} concentration is below the NAAQS

<u>Note:</u> Since project meets conformity requirements at all receptors, no need to determine whether receptor is appropriate for annual PM_{2.5} NAAQS

Appendices for Draft Guidance

- App A: Clearinghouse of resources for PM hot-spot analyses
- App B: Examples of projects of local air quality concern
- App C: Projects needing analyses in certain PM₁₀ areas
- App D: How to characterize intersection links for MOVES
- App E/F: Abbreviated PM hot-spot analysis examples (using MOVES) for a highway and transit project
- App G/H: Examples on how to configure and run EMFAC for a highway and transit project
- App I: Estimating locomotive emissions
- App J: Air quality modeling inputs and other details
- App K: Examples of how to calculate design values

25

Public Comment on Draft Guidance

- EPA is seeking comment on all aspects of the draft guidance and the following questions:
 - » Does the draft guidance provide sufficient information on how to configure and run MOVES2010 and EMFAC2007 at the project level?
 - » Do the air quality modeling sections of the draft guidance and references to other existing documents provide sufficient detail for air quality modelers to conduct PM hot-spot analyses using AERMOD or CAL3QHCR?
 - » Is there sufficient information in the draft guidance to calculate design values and determine appropriate receptors? If not, what additional information is necessary?
 - » Are there issues that the draft guidance does not address that should be addressed in the final guidance or in other EPA efforts?
 - » What types of outreach, training, and other technical assistance would be helpful in implementing the final guidance?
- EPA encourages specific details and/or examples whenever possible

Planned Outreach on Draft Guidance

- Conference calls with stakeholder groups
- Webinar being planned for late June/early July (will be open to all interested parties)
- Conference presentations

27

Potential Future Training Efforts

- PM hot-spot guidance training course
- MOVES project-level training
- AERMOD training and support
- Any other ideas?

Contact Information

- Comments on draft guidance due July 19 and can be sent to <u>PMhotspot-comments@epa.gov</u>
 - » Comments can also be sent by mail or fax (see Federal Register)
- <u>Federal Register</u> notice, draft guidance, fact sheet, conformity regulations, and other background at: www.epa.gov/otaq/stateresources/transconf/policy.htm
- Any questions on draft guidance? Interested in webinar?
 - » Contact Meg Patulski at:
 - (734) 214-4842 or
 - patulski.meg@epa.gov